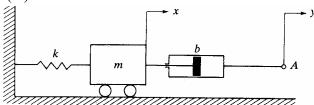
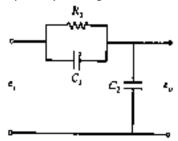
OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 3723 Systems I Spring 2003

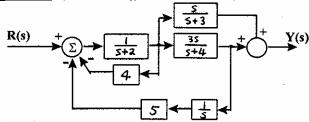


Final Exam

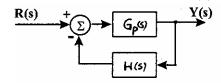
1)	; 2)	; 3)	; 4)	;
Name :	•			
Student II	D:			


Problem 1: (Time Response)

The mechanical system shown below is at rest initially. At t = 0, a unit-step displacement input is applied to point A (i.e., y(t) = u(t)). Assuming that the system remains linear throughout the response period and is *overdamped*, determine the response x(t) as well as the values of x(0+), $\dot{x}(0+)$ and steady state $x(\infty)$.

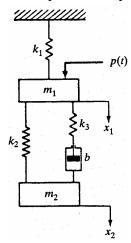


Problem 2: (Frequency Response)


Consider the stable electrical circuits shown below. Assume that the input is sinusoidal, $e_i(t) = E_i \sin \omega_1 t \cos \omega_2 t$, determine the steady state output voltage $e_o(t)$.

Problem 3: (Block Diagram Reduction)

Use block diagram reduction to rearrange the above block diagram into the form shown below and find its transfer function, $\frac{Y(s)}{R(s)}$.


Problem 4: (Routh Stability Criteria)

Find the region of K in $G_p(s)$ for which the unity feedback (i.e., H(s) = 1) control system is stable

$$G_p(s) = \frac{K(s^2 + 15s + 55)}{s(s^2 + s + 10)}$$
.

<u>Problem 5</u>: (Analogous System)

Using the force-current analogy, derive an analogous electrical circuit from the mechanical system shown below, where p(t) is the force input to the system.

